
A Mathematical Introduction to Lattice-Based Cryptography

Simon Campos Greenblatt∗

Department of Mathematics
North Carolina State University

Raleigh, North Carolina

Spring 2021

1 Introduction

Modern cryptosystems such as RSA and Diffie-Hellman rely on the difficulty of factoring large numbers
or solving discrete logarithms. However, with the advent of quantum computers, some of these difficult
problems might become feasibly solvable in the future. As such, quantum-resistant cryptosystems are an
important area of research in the field of information security. A promising theory that has emerged over the
last several years is that of lattices. In addition to providing difficult problems for which no known quantum
solutions exist, lattice-based cryptosystems lend themselves well to parallelized implementations for faster
encryption and decryption. Along with the fact that these cryptosystems are relatively easy to implement,
these properties put lattice-based cryptography in a forward-thinking position.

The purpose of this paper is to introduce the theory of lattices in the context of cryptography by discussing
their properties, hard problems based on them, and an overview of both the GGH and NTRU cryptosystems.
Concrete examples will be provided to illustrate the processes of key creation, encryption, and decryption.
I will also discuss the LLL lattice reduction algorithm as a way of attacking these cryptosystems and its
applications to cryptanalysis. Finally, I will touch upon digital signature schemes based on GGH and NTRU.

2 Definitions and Properties of Lattices

Definition: Let v1, ...,vn ∈ Zn be a set of linearly independent vectors with integer entries. The integral
lattice generated by v1, ...,vn is the span with integer coefficients,

L = {a1v1 + ...+ anvn : a1, ..., an ∈ Z} (1)

Equivalently, an integral lattice can also be defined of as an additive subgroup of Zm for some m ≥ 1.
A basis for L is any set of linearly independent vectors that can generate L. The dimension of L is its
number of basis vectors. It is often convenient to form a matrix using the basis vectors as the rows of the
matrix.

Proposition 2.1: Any two bases for a lattice L are related by a matrix having integer coefficients and
a determinant equal to ±1.

This set of matrices is called the general linear group (over Z) and is denoted by GLn(Z). It is also the
group of matrices with integer entries whose inverses also have integer entries.

∗Correspondence to: sccampos@ncsu.edu

1

Example 2.1: Consider the three-dimensional lattice L ⊂ Z3 generated by the three vectors

v1 = (4, 2, 11), v2 = (−4, 2, 0), v3 = (−12,−25, 8).

We now form a matrix using these vectors as the rows of the matrix,

A =

 4 2 11
−4 2 0
−12 −25 8

Now consider the matrix in GLn(Z) with determinant −1,

U =

−4 −4 3
5 6 0
0 1 4

We can now take the product of these matrices to find another matrix.

B = UA =

−36 −91 −20
−4 22 55
−52 −98 32

Proposition 2.1 tells us that the rows of the matrix B are also a basis for L.

Definition: Let L be a lattice of dimension n with basis vectors v1, ...,vn. The fundamental domain of L
corresponding to this basis is the set

F(v1, ...,vn) = {t1v1 + ...+ tnvn : 0 5 ti < 1} (2)

Proposition 2.2: Let L be a lattice of dimension n and fundamental domain F . Then every vector w ∈ Rn

can be written in the form

w = t + v for a unique t ∈ F and a unique v ∈ L.

In other words, Proposition (2.2) states that in much the same way that a real number can be decomposed
into the sum of its integer and fractional parts (i.e. ∀x∈ R, x = bxc+ {x}), so too can any vector be decom-
posed into the sum of a point on a lattice and a point in its fundamental domain. Equivalently, the union
of translated fundamental domains across all vectors in the lattice exactly covers Rn. Figure 1 illustrates a
2-dimensional lattice and its translated fundamental domains.

Definition: Let L be a lattice of dimension n with fundamental domain F . Then the n-dimensional volume
of F is called the determinant of L and is denoted by det(L).

Calculating the determinant of a lattice is as simple as computing the determinant of the matrix whose
rows are the basis vectors for that lattice. It is important to note that all the fundamental domains of
a lattice L have the same determinant (up to the sign) regardless of the chosen basis. This makes the
determinant an important invariant of a lattice. In example (2.1), det(A) = 1492. Even though the rows
of matrix B defined an alternate basis for L, |det(B)| = 1492. Now, if one were to try to maximize the
volume of the parallelepiped outlined by the basis vectors of L, then the largest volume is obtained when the
basis vectors are all orthogonal to one another. This leads to an upper bound on the determinant of a lattice.

Definition: Let L be a lattice with basis vectors v1, ...,vn and fundamental domain F . Then the Hadamard
Inequality states that

det(L) = V ol(F) ≤ ‖v1‖...‖vn‖ (3)

The closer the basis vector are to being orthogonal, the closer Hadamard’s Inequality is to being an equality.
This leads to an important metric for the basis vectors of a lattice.

2

v2

v1

F

Figure 1: A lattice L and its fundamental domain F .

Definition: Let L be a lattice of dimension n with basis vectors B = {v1, ...,vn}. Then the Hadamard
Ratio of the basis B is

H(B) =

(
det(L)

‖v1‖...‖vn‖

)1/n

(4)

In essence, the Hadamard Ratio gives a measurement for how orthogonal the basis vectors of a lattice are.
Since the Hadamard Ratio satisfies 0 < H(B) ≤ 1, bases with values close to 1 are more orthogonal. The
reason for taking the nth root is to make the Hadamard Ratio consistent across dimensions since the ratio
will tend to be smaller the higher the dimension. As we will soon see, bases with H(B) close to 1 are consid-
ered “good” while bases with H(B) close to 0 are considered “bad”. In Example (2.1), the basis described
by matrix A has a Hadamard Ratio of 0.9911 whereas the basis described by matrix B has a Hadamard
Ratio of 0.1296. Therefore, even though both are bases for the same lattice, A is a better basis than B.

3 Difficult Problems in Lattices

The two most important problems problems associated with lattices are those of finding the shortest nonzero
vector in a lattice and finding a vector in a lattice that is closest to a given nonlattice vector. It turns out
that both of these problems are NP-hard and only become more difficult as the dimension n of the lattice
grows. More formally,

The Shortest Vector Problem (SVP): Find a vector v ∈ L that minimizes the Euclidean norm ‖v‖.

The Closest Vector Problem (CVP): Given a vector w ∈ Rn that is not in L, find a vector v ∈ L that
minimizes the Euclidean norm ‖w − v‖.

In general, CVP can oftentimes be reduced to SVP in a slightly higher dimension, thus making the diffi-
culty of both problems fairly equivalent. There also exist variants of SVP and CVP such as the Shortest
Basis Problem (SBP), the Approximate Shortest Vector Problem (apprSVP) and the Approximate Closest
Vector Problem (apprCVP). In practice, the CVP and its approximate variant are most commonly used in
lattice-based cryptography. What follows are some important results related to the expected values of the
SVP and CVP in dimension n.

3

Theorem 3.1 (Hermite’s Theorem): Every lattice L of dimension n contains a nonzero vector v ∈ L
satisfying

‖v‖ ≤
√
ndet(L)1/n (5)

This inequality can be improved for large n by using the formula

‖v‖ /
√

2n

πe
· det(L)1/n (6)

This approximation improves formula (5) by a factor of
√

2/πe ≈ 0.4839.

Definition: Let L be a lattice of dimension n. The Gaussian expected shortest length is

σ(L) =

√
n

2πe
· det(L)1/n (7)

In other words, the Gaussian heuristic says that the shortest nonzero vector in a randomly chosen lattice
will satisfy ‖vshortest‖ ≈ σ(L). However, for small values of n, it’s better to use the more precise formula

σ(L) = (Γ(1 + n/2)det(L))1/n/
√
π (8)

where Γ(x) is the Gamma function.

We will find that the Gaussian heuristic is useful in quantifying the difficulty of finding the shortest vector in
a lattice. In particular, if the actual shortest vector of a lattice L is significantly shorter than the expected
σ(L), then a lattice reduction algorithm such as LLL will be much more effective at finding the shortest
vector. The same is true for the CVP since the closest lattice vector v ∈ L to a random point w ∈ Rn will
satisfy ‖w − v‖ ≈ σ(L).

Example 3.1: Consider the lattice described in Example (2.1) with dimension n = 2 and determinant
det(L) = 1492. Then the Gaussian expected shortest length σ(L) derived from formula (8) is equal to 21.79.
This means that we can expect the shortest vector in L (and similarly the distance from a random nonlattice
point to its closest lattice point) to be around 21.79.

4 Babai’s Algorithm

Let L ⊂ Rn be a lattice with basis v1, ...,vn ∈ Zn with the added property that each of its basis vectors are
pairwise orthogonal to each other (i.e. vi · vj = 0 for all i 6= j). Also, let w ∈ Rn be a point not on L. Then
finding the vector v ∈ L that is closest to w is easy enough. We first write w as a linear combination of the
basis vectors of L (by solving a system of linear equations) as follows:

w = t1v1 + ...+ tnvn with t1, ..., tn ∈ Rn (9)

Then the closest vector v = a1v1 + ...+ anvn ∈ L (with a1, ..., an ∈ Zn) will be the one where each ai is the
closest integer to the corresponding ti. Since we know that the translates of F by the elements of L cover all of
Rn, any w ∈ Rn will be located in a unique translate F+v by an element v ∈ L. In essence, by rounding the
coefficients to the closest integer, we are selecting the vertex of the parallelepiped F + v that is closest to w
as a tentative solution to the CVP. This is easy enough since by equation (2), the coefficients t1, ..., tn will be
in [0, 1) and we need only replace a ti by 0 if it is less than 1

2 or replace it by 1 if it is greater than or equal to 1
2 .

Unfortunately, this result is due only to the fact that the basis vectors for L are pairwise orthogonal to each
other. This means that this procedure is not guaranteed to work for any arbitrary basis of L. In fact, this
issue becomes much worse when the basis vectors aren’t very orthogonal and as the dimension of L increases.
Both of these factors result in a parallelepiped that is so elongated that the closest vertex will be quite far
from the target point. However, if the basis vectors are reasonably orthogonal to each other, we can expect

4

Target
Point

Closest Lattice
Point

Target
PointClosest

Vertex

Closest Lattice
Point

Figure 2: Babai’s Algorithm produces different results with different bases.

this procedure to successfully solve the CVP. Figure 2 illustrates this attempt. More formally, we introduce
Babai’s Closest Vector Algorithm:

Theorem 4.1 (Babai’s Algorithm): Let L be a lattice with basis v1, ...,vn and let w ∈ Rn be an
arbitrary vector. If the basis vectors are sufficiently orthogonal to one another (i.e. with a Hadamard ratio
close to 1), then the following algorithm solves the CVP:

Write w = t1v1+...+tnvn with t1, ..., tn ∈ Rn.
Set ai = btie for i = 1, ..., n.
Return the vector v = a1v1 + ...+ anvn.

Figure 3: Babai’s Algorithm

Example 4.1: Again, consider the lattice first described in Example (2.1). We are going to use Babai’s
Algorithm to find a vector in L that is closest to the vector w = (834, 741, 532). We first express w as a
linear combination of v1, v2, and v3 using real coordinates. That is to say, we need to find t1, t2, t3 ∈ R
such that

w = t1v1 + t2v2 + t3v3.

This gives the following three linear equations:

834 = 4t1 − 4t2 − 12t3, 741 = 2t1 + 2t2 − 25t3, 532 = 11t1 + 0t2 + 8t3

Or in matrix notation,

(834, 741, 532) = (t1, t2, t3)

 4 2 11
−4 2 0
−12 −25 8

Solving this system of linear equations gives t1 ≈ 69.05, t2 ≈ −54.11, and t3 ≈ −28.45. We now round these
coefficients to the nearest integer and compute

v = bt1ev1 + bt2ev2 + bt3ev3 = 69(4, 2, 11)− 54(−4, 2, 0)− 28(−12,−25, 8) = (828, 730, 535)

Then v is in L and v should be close to w. Indeed we find that ‖v − w‖ ≈ 12.89, much closer than the
expected 21.79 from Example (3.1). This is to be expected, since the vectors in the given basis are fairly
orthogonal to each other as seen by the fact that the Hadamard Ratio of matrix A was 0.9911.

We now try to solve the same closest vector problem in the same lattice but this time using the basis
described by matrix B. The system of linear equations

5

(834, 741, 532) = (t1, t2, t3)

−36 −91 −20
−4 22 55
−52 −98 32

has the solution (t1, t2, t3) ≈ (−2597.28,−2064.01, 1940.85) so we set

v′ = −2597(−36,−91,−20)− 2064(−4, 22, 55) + 1941(−52,−98, 32) = (816, 701, 532)

Then v′ ∈ L but v′ is not particularly close to w, since ‖v′−w‖ ≈ 43.86, which is greater than the Gaussian
expected shortest distance for this lattice. Again, this is shown by the fact that the Hadamard ratio of the ba-
sis given by matrix B is 0.1296. Keep in mind that this disparity becomes much greater in higher dimensions.

5 The GGH Public Key Cryptosystem

The GGH cryptosystem is a straightforward application of the ideas discussed in the previous sections. Al-
ice’s private key is a good basis Bgood for a lattice L and her public key is a bad basis Bbad. Bob’s message
is a vector m, which he uses to form a linear combination

∑
mivi of the vectors in Bbad. He then perturbs

the sum by adding a random vector r. Since Alice knows a good basis for L, she can use Babai’s algorithm
to find v, and then expresses v in terms of the bad basis to recover m. Since Eve only knows Bbad, she
is unable to solve the CVP in L. It is important to notice that GGH is a probabilistic cryptosystem since
the same plaintext can be encrypted into different ciphertexts depending on the choice of r. One must be
careful not to leak information by reusing the same perturbation vector or plaintext. The following table
describes the process in more detail.

Key Creation
Alice begins by choosing a set of linearly independent vectors v1, ...,vn ∈ Zn that are reasonably
orthogonal to one another. One way to do this is to fix a parameter d and chose the coordinates
of v1, ...,vn randomly between −d and d. Let V be the n-by-n matrix whose rows are the vectors
v1, ...,vn. This will be her private key. Let L be the lattice generated by these vectors.
Alice must now create a bad basis to be her public key. She can do this multiplying V by a matrix
U ∈ GLn(Z). One way to generate U is by multiplying together a large number of randomly chosen
elementary matrices. She computes W = UV . The resulting row vectors w1, ...,wn of W are the
bad basis for L and also Alice’s public key.

Encryption
In order for Bob to send a message to Alice, he first selects a small vector m with integer coefficients
as his plaintext. He also chooses a small random perturbation vector r. He could choose the
coordinates of r randomly between −δ and δ, where δ is a fixed public parameter. He then computes
the cipher text e using the following formula.

e = mW + r =

n∑
i=1

miwi + r

Notice that e is not a lattice point but it is close to the lattice point mW , since r is small.
Decryption

Alice uses Babai’s Algorithm as described in Theorem (4.1) on Bob’s ciphertext e with the good
basis v1, ...,vn. Since r is small and she is using a good basis, the lattice point that she finds is
mW . Finally, she multiplies by W−1 to recover the original message m.

Table 1: The GGH Public Key Cryptosystem

Example 5.1: Let Alice’s private basis be v1 = (4, 13) and v2 = (−57,−45). She then generates the matrix
U ∈ GLn(Z) (

−1118 −525
707 332

)

6

to generate her private basis w1 = (25453, 9091) and w2 = (−16096,−5749). In this case, the determinant
of L is 561. Note that the Hadamard Ratio of the private basis is 0.7536 whereas the Hadamard Ratio of
the public basis is 0.0011. Suppose that Bob sends the encrypted message e = (155340, 55483). Alice uses
Babai’s Algorithm to find the closest lattice vector to e. She must first solve the following system of linear
equations.

(155340, 55483) = (t1, t2)

(
4 13

−57 −45

)
which has solutions t1 ≈ −6823.12 and t2 ≈ −3204.08. Rounding these coefficients to the nearest integer
and multiplying by the vectors in the private basis gives (155336, 55481) as the closest vector to e in L. This
tells us that Bob’s random perturation vector r is equal to (4, 2). We now multiply by W−1 to recover the
plaintext (8, 3).
Notice that if Eve applies Babai’s Algorithm with the public key, the plain text she recovers is (-8, -23)
which is not the same as the one recovered by Alice.

One of the advantages to using GGH is that it only requires O(k2) operations as opposed to RSA, ECC, or
Elgamal which require O(k3) operations. However, this does come at the cost of key size since key size is
typically O(n2log n). For dimension n > 400 (the point at which the underlying CVP becomes intractable)
the size of the public key is approximately 128kB. Compare this to the maximum 0.5kB key size used by
RSA.
It is important to mention that many variations of GGH have been proposed throughout the years, each
with differences in the initial parameters. These variations attempt to optimize the size of the perturbation
vector relative to vectors in the lattice so that Babai’s Algorithm can guarantee to remove this vector and
recover the correct plaintext. However, some of the more secure variations still require hours to generate a
public key and several minutes to decrypt a message. As it stands, GGH is still an open area of research
but an important proof-of-concept for lattice-based cryptosystems.

6 The LLL Lattice Reduction Algorithm

So far, the GGH cryptosystem relies on Babai’s algorithm failing to solve the CVP with a bad basis. In this
section, I describe the LLL algorithm which attempts to solve the apprCVP in low dimensions. In short,
the LLL algorithm uses the Gram-Schmidt orthogonalization process to try to “straighten” out the vectors
of a bad basis and increase its Hadamard ratio. When complete, the LLL algorithm outputs a better basis
whose vectors are much shorter then those of the input basis.

We begin by exploring the idea of alternately subtracting multiples of one basis vector to another as a way
of reducing their size. Let v1 and v2 be vectors in Zn with ‖v1‖ < ‖v2‖. Ideally, we would project v2 onto
the orthogonal complement of v1 since this would make the resulting vector orthogonal to v1. Specifically,
the new vector v∗2 would be

v∗2 = v2 −
v1 · v2

‖v1‖2
v1

However, this does not guarantee that that v∗2 will be in the lattice L. In reality, we are only allowed to
subtract integer multiples of v1 from v2. This means that the best we can do is round and replace v2 with
the vector

v∗2 = v2 −mv1 where m =

⌊
v1 · v2

‖v1‖2

⌉
If v2 is still longer than v1, we stop. Otherwise we swap v1 and v2 and repeat the process. In higher dimen-
sions, we can extend this process by subtracting from vk integer multiples of the previous vectors v1, ...,vk−1

so as to make vk smaller. Thus, the goal of LLL is to produce a list of short vectors in increasing order of
length. It is interesting to note that this size reduction depends on the order in which the vectors are fed

7

into the algorithm. Before I describe the algorithm in full, we need to introduce the idea of a supplementary
Gram-Schmidt orthogonal basis.

Suppose that we are given a basis B = {v1, ...,vn} for a lattice L. We start by letting v∗1 = v1, and
then for i ≥ 2 we apply the Gram-Schmidt process and let

v∗i = vi −
i−1∑
j=1

µi,jv
∗
j , where µi,j =

vi · v∗j
‖v∗j ‖2

for 1 ≤ j ≤ i− 1 (10)

Then B∗ = {v∗1 , ...,v∗n} is an orthogonal basis for the vector space spanned by B. While B∗ is not a basis
for L, they do have the same determinant.

Definition: Let B = {v1, ...,vn} be a basis for a lattice L and let B∗ = {v∗1 , ...,v∗n} be the associated
Gram-Schmidt orthogonal basis as described above. Then the basis B is said to be LLL reduced if it satisfies
the following two conditions:

Size Condition |µi,j | =
|vi · v∗j |
‖v∗j ‖2

≤ 1

2
for all 1 ≤ j < i ≤ n. (11)

Lovász Condition ‖v∗i ‖
2 ≥

(
3

4
− µ2

i,i−1

)
‖v∗i−1‖

2 for all 1 < i ≤ n. (12)

The intuition behind both of these conditions is that while the size condition reduces the length of vectors,
the Lovász condition ensures that they are roughly orthogonal and ordered by length. By going back and
forth between the two and reducing whenever possible, the LLL algorithm is able to generate a better basis.

Input a basis {v1, ...,vn} for a lattice L
Set k = 2
Set v∗1 = v1

Loop while k ≤ n
Loop down from j = k − 1 to 1

Set vk = vk − bµk,jevj [Size Reduction]
End j loop

If ‖v∗k‖2 ≥
(

3
4 − µ

2
k,k−1

)
‖v∗k−1‖2 [Lovász Condition]

Set k = k + 1
Else

Swap vk−1 and vk [Swap Step]
Set k =max(k − 1, 2)

End If
End k Loop
Return LLL reduced basis {v1, ...,vn}

Figure 4: The LLL lattice reduction algorithm

Example 6.1: Let L be the lattice generated by the rows of the matrix

M =

20 51 35 59 73 73
14 48 33 61 47 83
95 41 48 84 30 45
0 42 74 79 20 21
6 41 49 11 70 67

23 36 6 1 46 4

Note that the smallest vector in this basis is ‖v6‖ = 63.198. After performing LLL on this basis, the resulting
matrix is

8

MLLL =

−6 −3 −2 2 −26 10
11 30 2 5 −6 24
−14 −10 14 −48 −3 −6
−3 24 43 23 −33 −38
64 −44 −16 −46 −13 4
−28 −25 41 5 30 39

Indeed, both matrices have the same determinant as det(M) = det(MLLL) = ±21242880806. Furthermore,
as expected, the LLL reduced matrix has a much better Hadamard Ratio than the original matrix

H(M) = 0.45726 and H(MLLL) = 0.93408

so the vectors in the LLL basis are more orthogonal. The smallest vector in the LLL-reduced basis is
‖v1‖ = 28.792, which is a significant improvement over the original basis. Compare these values to the
Gaussian Expected Shortest Length of σ(L) = 40.024

As explained above, the LLL algorithm returns a basis in which the vectors are quasi-orthogonal, i.e., they
are reasonably orthogonal to one another. This means that we can combine the LLL algorithm with Babai’s
algorithm to try to solve the apprCVP and thereby attack a lattice-based cryptosystem such as GGH.
It is important to note that LLL is a polynomial-time algorithm in the dimension of the lattice. Many
improvements have been proposed to the original algorithm which attempt to improve the output at the
cost of increased running time. However, since the the underlying CVP problem that LLL is trying to solve
is NP-hard, these algorithms lie at the border between different time complexity classes. This means that
a minor improvement can cause the resulting algorithm to no longer terminate in polynomial time.

Also, as part of this paper, I coded a version of the LLL algorithm that operates on matrices of dimension
6. The source code (written in the C language) is available upon request.

7 Primer for Convolution Polynomial Rings

In this section, I introduce some definitions and notation related to the polynomial quotient rings that are
used by the NTRU public key cryptosystem. I assume that the reader is familiar with basic ring theory.

Definition: The ring of convolution polynomials of rank N is the quotient ring

R =
Z[x]

(xN − 1)
(13)

Similarly, the ring of convolution polynomials of rank N, modulo q is the quotient ring

Rq =
(Z/qZ)[x]

(xN − 1)
(14)

Without getting into any technical proofs, the general idea is that for Rq there are two independent moduli:
one for the coefficients and another for the exponents. In other words, we must reduce the coefficients of a
polynomial modulo q and the exponents modulo N in order for the resulting polynomial to be in Rq. In the
case of R, only the exponents are required to be in Z/NZ while the coefficients are free to be anywhere in Z.

The idea of multiplication between two polynomials can be generalized as a convolution product (denoted
by ?). We simply multiply the two polynomials as usual and then reduce the exponents modulo N for
elements in R or reduce the exponents modulo N and the coefficients modulo q for elements in Rq.

Example 7.1: Let N = 5 and let a(x), b(x) ∈ R be the polynomials

a(x) = 2 + 2x− 2x2 + x3 − 2x4 and b(x) = −1 + 3x− 3x2 − 3x3 − 3x4

9

Then the product

a(x) ? b(x) = −2 + 4x+ 2x2 − 19x3 − x4 − 9x5 + 9x6 + 3x7 + 6x8

= −2 + 4x+ 2x2 − 19x3 − x4 − 9 + 9x+ 3x2 + 6x3

= −11 + 13x+ 5x2 − 13x3 − x4

If we instead work in the ring R4, then we reduce the coefficients modulo 4 to obtain

a(x) ? b(x) = 1 + x+ x2 + 3x3 + 3x4 in R4 = (Z/4Z)[x]/(x5 − 1)

This natural mapping from R to Rq in which we simply reduce the coefficients modulo q, is in fact a ring
homomorphism. It turns out to be convenient to have a consistent way of going in the other direction,
namely a mapping Rq → R. Thus we define the following:

Definition: Let a(x) ∈ Rq. The center-lift of a(x) to R is the unique polynomial a′(x) satisfying a′(x)
mod q = a(x) where the chosen coefficients are in the interval

−q
2
< a′i ≤

q

2

It is important to note that this reverse mapping is not a homomorphism.

Example 7.2: Let c(x) = a(x) ? b(x) = 1 + x + x2 + 3x3 + 3x4 ∈ R4 be the product from Example
7.1. Since q = 4, the coefficients of the center-lift of c(x) are chosen from {−2,−1, 0, 1, 2}. Then

Center-lift of a(x) = a′(x) = 1 + x+ x2 − 2x3 − 2x4 ∈ R
Proposition 7.1: Let q be prime. Then a(x) ∈ Rq has a multiplicative inverse if and only if

gcd(a(x), xN − 1) = 1 in (Z/qZ)[x]

Whenever this is the case, the inverse a(x)−1 ∈ Rq can be computed using the Extended Euclidean Algorithm
to find the polynomials u(x),v(x) ∈ (Z/qZ)[x] satisfying

a(x)u(x) + (xN − 1)v(x) = 1 in (Z/qZ)[x].

Then a(x)−1 = u(x) in Rq.

Example 7.3: Let N = 5, q = 3, and a(x) = −x3 + x2 + 1 ∈ R3. We first use the Extended Eu-
clidean Algorithm to compute the greatest common divisor of −x3 + x2 + 1 and x5 − 1. Note that since we
are working modulo 3, −x3 + x2 + 1 = 2x3 + x2 + 1 and x5 − 1 = x5 + 2. Thus

x5 + 2 = (2x3 + x2 + 1)(2x2 + 2x+ 2) + (2x2 + x)

2x3 + x2 + 1 = (2x2 + x)(x) + (1)

2x2 + x = (1)(2x2 + x) + (0)

Since the last nonzero remainder is 1, gcd(x5 +2, 2x3 +x2 +1) = 1 and therefore −x3 +x2 +1 has an inverse
in (Z/3Z)[x]. Using the substitution method yields

(2x)(x5 − 1) + (2x3 + 2x2 + 2x+ 1)(−x3 + x2 + 1) = 1

Proposition 7.1 tells us that a(x)−1 = 2x3 + 2x2 + 2x+ 1. Indeed we can check that

a(x) ? a(x)−1 = (−x3 + x2 + 1)(2x3 + 2x2 + 2x+ 1)

= −2x6 + 3x3 + 3x2 + 2x+ 1

= x+ 3x3 + 3x2 + 2x+ 1

= 1

Definition: For any positive integer d1 and d2, the set of trinary polynomials is

T (d1, d2) =

a(x) has d1 coefficients equal to 1

a(x) ∈ R : a(x) has d2 coefficients equal to − 1

a(x) has all other coefficients equal to 0

10

8 The NTRU Public Key Cryptosystem

Most cryptosystems such as RSA, Diffie-Hellman, Elgamal, and ECC are considered group-based cryptosys-
tems because their underlying hard problem only involves one operation. NTRU, on the other hand, is a
ring-based cryptosystem since it’s described in terms of convolution polynomial rings. However, its underly-
ing hard problem can be interpreted as either a SVP or CVP in a lattice. In fact, while NTRU doesn’t use
lattices directly, it derives its security from the difficulty of solving the SVP.

We begin by fixing an integer N ≥ 1 and two moduli p and q such that gcd(N, q) = gcd(p, q) = 1. We
then let R, Rp, and Rq be the convolution polynomial rings

R =
Z[x]

(xN − 1)
Rp =

(Z/pZ)[x]

(xN − 1)
Rq =

(Z/qZ)[x]

(xN − 1)
(15)

Notice that a polynomial a(x) ∈ R can be viewed as an element of Rp or Rq by reducing its coefficients
modulo p or q. To go in the other direction, we take the center-lift of an element in Rp or Rq to arrive in R.
Next, Alice chooses two random polynomials

f(x) ∈ T (d+ 1, d) and g(x) ∈ T (d, d) (16)

and computes the inverses of f(x) in Rq and Rp using the Extended Euclidean Algorithm.

Fq(x) = f(x)−1 in Rq and Fp(x) = f(x)−1 in Rp (17)

She then computes her public key as

h(x) = Fq(x) ? g(x) in Rq (18)

Her private key is made up of both f(x) and Fp(x). Now, Bob must choose a plaintext m(x) ∈ R whose
coefficients satisfy − 1

2p < mi ≤ 1
2p. This guarantees that m(x) is the center-lift of a polynomial in Rp. He

then chooses a random polynomial r(x) ∈ T (d, d) (known as a blinding value) and computes the following
ciphertext in the ring Rq:

e(x) ≡ ph(x) ? r(x) + m(x) (mod q) (19)

Notice that by multiplying h(x) ? r(x) by p, this term will reduce to 0 in Rp once we migrate to that ring.
Meanwhile in Rq, it serves to hide the plaintext. The first step in decryption is for Alice to compute the
product a(x) ≡ f(x) ? e(x) (mod q). We observe that

a(x) ≡ f(x) ? e(x) (mod q)

≡ f(x) ? (ph(x) ? r(x) + m(x)) (mod q)

≡ pf(x) ? Fq(x) ? g(x) ? r(x) + f(x) ?m(x) (mod q)

≡ pg(x) ? r(x) + f(x) ?m(x) (mod q)

Proposition 8.1: If the NTRU parameters (N, p, q, d) are chosen such that q > (6d+1)p, then the resulting
polynomial pg(x) ? r(x) + f(x) ?m(x) is equal to a(x) not just modulo q, but also exactly in R.

If the condition of proposition (8.1) is met, then decryption will never fail. Finally, she center-lifts a(x)
to an element of R and performs the following computation modulo p.

b(x) ≡ Fp(x) ? a(x) (mod p) (20)

We can see that b(x) is equal to the plaintext m(x) by analysing the computation

b(x) ≡ Fp(x) ? a(x) (mod p)

≡ Fp(x) ? (pg(x) ? r(x) + f(x) ?m(x)) (mod p)

≡ Fp(x) ? f(x) ?m(x) (mod p)

≡m(x) (mod p)

Notice how f(x) is also canceled out, although this time by its inverse in Rp. The following table summarizes
the NTRU cryptosystem.

11

Public Parameter Creation
A trusted party chooses public parameters (N, p, q, d) with N and p prime, gcd(N, q) = gcd(p, q) = 1,
and q > (6d+ 1)p. Typical parameters for standard security are (N, p, q, d) = (251, 3, 128, 2).

Key Creation
Alice chooses a private polynomial f(x) ∈ T (d+1, d) that is invertible in Rq and Rp. If f(x) fails to
have an inverse in either, she discards this f(x) and chooses a new one. She then uses the Extended
Euclidean Algorithm to compute Fq(x) and Fp(x), the inverses of f(x) in Rq and Rp respectively.
Next, she chooses a private g(x) ∈ T (d, d) and publishes her public key h(x) = Fq(x) ? g(x).

Encryption
Bob chooses a plaintext m(x) ∈ Rp and a random blinding value r(x) ∈ T (d, d). He then uses
Alice’s public key h(x) to compute the ciphertext

e(x) ≡ pr(x) ? h(x) + m(x) (mod q)

Decryption
Alice computes

f(x) ? e(x) ≡ pg(x) ? r(x) + f(x) ?m(x) (mod q)

Then she center-lifts this to a(x) ∈ R and recovers Bob’s plaintext by computing

m(x) ≡ Fp(x) ? a(x) (mod p)

Table 2: The NTRU Public Key Cryptosystem

Example 8.1: Alice and Bob agree on NTRU parameters (N, p, q, d) = (7, 2, 29, 2). Notice that since
29 = q > (6d + 1)p = 26, proposition (8.1) ensures that decryption will work. Alice chooses her public key
to be

h(x) = 23x6 + 24x5 + 23x4 + 24x3 + 23x2 + 23x+ 23

Bob then sends the plaintext message m(x) = x5 +1 using the random blinding value r(x) = x6 +x3 +x+1.
He performs the following computation to encrypt his plaintext.

e(x) ≡ pr(x) ? h(x) + m(x) (mod q)

≡ 2(7x6 + 6x5 + 7x4 + 6x3 + 6x2 + 6x+ 5) + (x5 + 1) (mod 29)

≡ 14x6 + 13x5 + 14x4 + 12x3 + 12x2 + 12x+ 11 (mod 29)

This is the ciphertext that Bob sends to Alice. Now suppose that Alice’s private key is f(x) = x5 + x4 +
x2 + x+ 1 and F2(x) = x6 + x5 + 1. She decrypts Bob’s ciphertext e(x) as follows:

f(x) ? e(x) ≡ pg(x) ? r(x) + f(x) ?m(x) (mod q)

≡ 7x6 + 4x5 + 5x4 + 5x3 + 4x2 + 5x+ 4 (mod 29)

Center-lifting this polynomial to a(x) ∈ R gives the same polynomial, that is a(x) = 7x6 +4x5 +5x4 +5x3 +
4x2 + 5x+ 4. She performs a final computation, this time modulo 3.

m(x) ≡ Fp(x) ? a(x) (mod p)

≡ (x6 + x5 + 1)(7x6 + 4x5 + 5x4 + 5x3 + 4x2 + 5x+ 4) (mod 2)

≡ 16x6 + 15x5 + 16x4 + 14x3 + 14x2 + 14x+ 13

≡ x5 + 1 (mod 2)

Indeed she is able to retrieve Bob’s plaintext.

One of the advantages NTRU has over GGH is that it’s much faster to implement. The most time-consuming
part of encryption and decryption is the convolution product. Since these convolution products are being

12

performed on ternary polynomials, they can be computed without any multiplications; they require 2
3N

2

additions and subtractions. Thus NTRU encryption and decryption takes O(N2) operations, where each
step is extremely fast.

Nevertheless, it still remains to be seen what exactly is the difficult problem the eavesdropper Eve is
stuck trying to solve. Multiplying both sides of equation (18) by f(x) reveals that

f(x) ? h(x) ≡ g(x) (mod q) (21)

where f(x) and g(x) have very small coefficients. Therefore breaking NTRU comes down to solving the
following problem.

Definition: Given h(x), find ternary polynomials f(x) and g(x) satisfying f(x) ? h(x) ≡ g(x) (mod q).
This is known as the NTRU Key Recovery Problem.

As we will see in the next section, this problem can be reformulated as a Shortest Vector Problem in a
special kind of lattice.

9 NTRU as a Lattice Cryptosystem

So far, it’s no obvious how NTRU is a lattice-based cryptosystem. We can draw some parallels between
GGH and NTRU. For example, both are probabilistic cryptosystems that mix the plaintext with a random
element to produce a ciphertext. In the case of GGH, this was a random perturbation vector which was later
rounded off in Babai’s algorithm. In the case of NTRU, this was the blinding value which later reduced to
zero in the ring Rp.

As it turns out, we can create a lattice based on the coefficients of the public key.
Let h(x) = h0 + ...+ hN−1x

N−1 be an NTRU public key. Then the NTRU Lattice LNTRU
h associated with

h(x) is the 2N -dimensional lattice spanned by the rows of the matrix

LNTRU
h =

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

h0 h1 . . . hN−1
hN−1 h0 . . . hN−2

...
...

. . .
...

h1 h2 . . . h0
0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

q 0 . . . 0
0 q . . . 0
...

...
. . .

...
0 0 . . . q

Notice that LNTRU

h is composed of four N -by-N blocks:

Upper left block = Identity matrix,

Lower left block = Zero matrix,

Lower right block = q times the identity matrix,

Upper right block = Cyclical permutations of the coefficients of h(x).

It is often convenient to abbreviate the NTRU matrix as

LNTRU
h =

(
I h
0 qI

)
(22)

We are now going to identify each pair of polynomials in R

a(x) = a0 + ...+ aN−1x
N−1 and b(x) = b0 + ...+ bN−1x

N−1

with a 2N -dimensional vector

(a, b) = (a, ..., aN−1x
N−1, b0, ..., bN−1x

N−1) ∈ Z2N .

13

Proposition 9.1: Assuming that equation (21) holds, the vector (f , g) is in the NTRU lattice LNTRU
h and

is the shortest nonzero vector in this lattice (with very high probability).

In other words, the private key is hidden in this lattice in the shape of the shortest vector. This means
that Eve can determine Alice’s private NTRU key if she can solve the SVP in LNTRU

h . Thus the security
of NTRU depends on the difficulty of solving the SVP. As mentioned in the section on LLL, if N is large,
the LLL algorithm does not find very small vectors. Experimental results on some of the best variations of
LLL suggest that values of N in the range of 250 to 1000 yield security levels comparable to current secure
implementations of RSA, Elgamal, and ECC.

10 Conclusion

One final topic that is worth mentioning is that of lattice-based digital signature schemes. For GGH, such a
scheme is straight-forward. Alice chooses a good basis for a lattice and publishes a bad basis as her public
key. She then signs a document d ∈ Zn using Babai’s algorithm with the good basis to compute a vector
that is close to d. She then rewrites this in terms of the bad public basis and publishes it as her signature. In
order for Bob to verify this signature, he would simply verify that it’s sufficiently close to d. Only someone
with a good basis could have solved this apprCVP and so the scheme works.

In the case of NTRU, such a scheme is more complicated to construct and is outside of the scope of
this paper. For further research, the name of the signature scheme is NTRUMLS (NTRU modular lattice
signature scheme) and is based on the idea of rejection sampling.

We have seen how the GGH and NTRU lattice-based cryptosystems offer promising alternatives for
modern cryptography, especially in the context of quantum resistance. These cryptosystems tend to be easy
to implement as the numbers involved are much smaller than those used by typical cryptosystems. We also
saw how lattice reduction algorithms such as LLL are a potential avenue of attack for these cryptosystems.
However, the operating characteristics of these algorithms is not very well understood and still remains an
active area of research.

11 References

1. An Introduction to Mathematical Cryptography, by Jeffrey Hoffstein et al., Springer, 2014, pp. 373-
470.

2. Advances in the GGH Lattice-based Cryptosystem, by Thomas Rond, California State University,
2016.

3. Hoffstein J., Lieman D., Pipher J., Silverman J. “NTRU: A Public Key Cryptosystem”, NTRU Cryp-
tosystems, Inc. (www.ntru.com).

4. Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures, by Phong Q. Nguyen and
Oded Regev, International Association for Cryptologic Research, 2006.

14

