
1 Introduction

The concept of Public Key Cryptography originated around 1970 when a number of

teams and research studies independently discovered similar concepts. The most notable of

these researchers - although possibly not the first - were Whitfield Diffie and Martin Hellman,

whose publication “New Directions in Cryptography”, provided the groundwork for public key

encryption systems that we continue to use today. The concept of secure communication, even

in the presence of eavesdroppers, is of timeless importance and in our modern world we utilize

what Diffie and Hellman defined as a Public Key Cryptosystem (PKC). Fundamentally, a PKC

employs two main components: a one-way-function - an invertible function whose image is

simple to convert, but extremely difficult to invert given only the image of a random input;

and trapdoor information - a piece of information that allows the inverse to be calculated with

ease. Before understanding the one-way-function that Diffie and Hellman selected, one must

first understand the Discrete Logarithm Problem.

2 The Discrete Logarithm Problem

Diffie and Hellman’s first public key construction drew inspiration heavily from the

Discrete Logarithm Problem in a finite field with prime order, Fp. By the Primitive Root Theo-

rem, there exists an element g ∈ Fp, whose powers generate every element of Fp, making Fp of

the form:

F∗p = {1, g, g2, g3, ..., gp−2}

The element g is called a primitive root or generator of F∗p.

Building on this idea, the Discrete Logarithm Problem (DLP) is the problem of finding

an exponent, x, such that

gx ≡ h (mod p)

for some nonzero element h ∈ Fp. Here, x is called the discrete logarithm of h to the base g,

denoted logg(h). The DLP can be extended to any arbitrary group G under that group’s group

laws and it turns out to be extremely computationally expensive and time consuming to crack

1



when instantiated with a sufficiently large value of p. In fact, in the context of cryptography,

security is only reached when it would take a computer longer than the age of the universe to

solve this problem.

3 The Diffie-Hellman Key Exchange

One of the biggest issues when trying to communicate across an insecure channel is

both parties agreeing on a key to use for their encryption, without the key falling into the hands

of an adversary. While this task may appear impossible at first, Diffie and Hellman discovered

a way to leverage the Discrete Logarithm Problem in a way that would allow two parties to

securely share a key over an insecure channel. The Key Exchange Protocol between two parties,

Alice and Bob, is as follows:

1. Alice and Bob agree on a large prime value, p, and a nonzero integer, g modulo p. These

values are then published publicly.

2. Now, Alice and Bob independently pick secret integers a, and b, respectively.

3. Alice calculates A ≡ ga (mod p) while Bob calculates B ≡ gb (mod p).

4. Next, Alice and Bob send their computed values A and B to one another over any com-

munication channel.

5. Finally, Alice uses Bob’s computed value to calculate A′ ≡ Ba (mod p), while Bob uses

Alice’s computed value to calculate B′ ≡ Ab (mod p). Now, Alice and Bob can utilize

the value of A′ and B′ as their private key for their encryption protocol.

Remark: The second set of values that Alice and Bob independently compute, A′ and B′, are

equivalent due to the following:

A′ ≡ Ba ≡ (gb)a ≡ gab ≡ (ga)b ≡ Ab ≡ B′ (mod p)

2



3.1 Example of the Diffie-Hellman Key Exchange

Alice and Bob communicate over an insecure channel and agree upon prime number

p = 2011 and primitive root g = 986. Alice selects her personal secret a = 231 and Bob

selects his personal secret b = 536. Alice computes A = 1727 ≡ 986231 (mod 2011) while

Bob computes B = 1162 ≡ 986536 (mod 2011). Both parties then exchange their values A and

B over an insecure communication channel, holding on to their personal secrets a, and b. Now

Alice and Bob compute their shared secret:

1948 ≡ 986231·536 ≡ Ab ≡ Ba (mod 2011)

Consider a third party, Charlie, who eavesdropped on Alice and Bob’s communication

channel. This means that Charlie has access to the values p = 2011, g = 986, A = 1727, and

B = 1162. If Alice and Bob agreed to use their shared secret as the key for an encryption

protocol for further communication on the channel, Charlie would need to use the values he

knows to find either Alice’s personal secret a, or Bob’s personal secret b. To do this, Charlie

would need to solve either of the following:

986a ≡ 1727 (mod 2011) or 986b ≡ 1162 (mod 2011)

Both of these problems take the form of the Discrete Log Problem. This example illustrates the

difficulty Charlie would have finding Alice and Bob’s shared secret as she would need to check

all possible powers of 986 mod 2011 in order to discover a and b. Due to the small magnitude

of the numbers in this example problem, Charlie could brute force the problem and sequentially

calculate each power; however, in real world applications, Alice and Bob would agree on a much

larger p value. In fact, current guidelines suggest selecting a p value with 1000 bits and picking

g approximately equal to p/2 with prime order. Following these guidelines makes the DLP

entirely impractical to solve without the application of a quantum computer.

3



4 The Diffie Hellman Problem

Stemming from this example, an eavesdropper like Charlie has access to the values

of g, p, A, B, ga, and gb, and we’ve seen that deriving the values of a, and b can prove to be

quite difficult. However, this does not necessarily guarantee the security of Alice and Bob’s

communication using an encryption protocol with their shared secret. This raises the following

question about the security of the Diffie-Hellman Problem (DHP): Let p be a prime and g an

integer. Given known values ga (mod p) and gb (mod p), how can one compute gab (mod p)

using only what is known? Clearly, if Charlie can solve the DLP she can gain access to either of

Alice or Bob’s private keys. However, it is unknown whether solving the DHP makes it easier

to solve the DLP.

5 Computational Difficulties

One of the practical difficulties of implementing the Diffie-Hellman Key Exchange is

that the numbers involved grow very quickly. As mentioned above, a real world implementation

would require a g value of about 500 bits. This is equivalent to raising a several hundred (deci-

mal) digit number to a very large power before reducing modulo p. This intermediate value can

grow to be larger than the number of particles in the universe. This begs the question of how

computers can implement the algorithm without running out of memory or time. The solution

lies in a procedure known as the Binary Exponential Algorithm which successively squares the

base g before reducing modulo p at every step. The specific procedure is outlined as follows:

1. Write out the exponent a in its binary form.

2. Calculate the necessary powers of q2j where j is the number of bits needed to represent a

in binary minus one. Reduce modulo p after every step.

3. Multiply together the results that correspond to a 1 in the binary representation of a.

Reduce mod p whenever the numbers grow too large.

4



5.1 Example of the Binary Exponential Algorithm

Suppose we want to compute 14147 (mod 1537). The intermediate value of 14147

is already a 102-digit number. Keep in mind that this is nowhere near the magnitude of the

numbers involved in a real-world applicaiton of Diffie-Hellman. We first express the exponent

47 in binary form as

47 = 32 + 8 + 4 + 2 + 1 = (101111)2

Next, we need to obtain the powers of 1412j (mod 1537) for 0 ≤ j ≤ 5 (Since 101111 is a 6 bit

number) by repeatedly squaring and reducing modulo 1537 after each result:

1412 ≡ 1437 (mod 1537) 14116 ≡ 364 (mod 1537)

1414 ≡ 778 (mod 1537) 14132 ≡ 314 (mod 1537)

1418 ≡ 1243 (mod 1537)

We now multiply together the powers of 141 that have a 1 in the binary representation of 47 and

get that

14147 = 14132+8+4+2+1

= 14132 · 1418 · 1414 · 1412 · 1411

≡ 314 · 1243 · 778 · 1437 · 141 ≡ 658 (mod 1537)

Note that this doesn’t require computing the 102-digit-long intermediate value. That being said,

most computers can only handle integers up to 64 bits. This means that even with this trick, most

implementations of the Diffie-Hellman Key Exchange require the use of Big Integer Libraries

such as GMP.

6 References

1. An Introduction to Mathematical Cryptography, by Jeffrey Hoffstein et al., Springer, 2014,

pp. 61–69.

2. Elementary Number Theory, by David M. Burton, McGraw-Hill, 2011, pp. 70-71.

5


